

Relatório de Aplicação nº 16 / Chile

Tratamento de um motor Caterpillar com REWITEC®

Data do relatório: 20.02.2016

Responsável pelo Relatório: Maximilian Theis (Consultor de vendas, América do

Sul)

Setor: Mineração

Cliente: Power Train Technologies

Barón de Juras Reales Nº 5050

Conchalí - Chile

Contatos: Juan Marcos González, Chefe de P&D

Leonardo Villagrán Paredes, Engº. Mecánico

Contratada: REWITEC GmbH

Dr.-Hans-Wilhelmi-Weg 1 35633 Lahnau (Alemanha) Tel. +49-6441-44599-0 Fax +49-6441-44599-25

Data da Aplicação: 01.-04.12.2015

Equipamento: Motor de combustão a diesel

Fabricante: Caterpillar

Modelo: C16

Ano de Fabricação: 2003

Objetivo: Aplicação do REWITEC® PowerShot® 20 para a

proteção do motor bem como para reduzir o

consumo de combustível

Conteúdo

1. Objetivo da aplicação	3
1.1 Histórico	3
2. Dados técnicos	4
3. Aplicação	5
4. Procedimentos	6
4.1 Análise dos dados	6
5. Conclusão e Recomendações	9
6 Anexo	10

1. Objetivo da aplicação

Ao adicionar o produto REWITEC® PowerShot® 20 ao sistema do motor, os efeitos do concentrado de revestimento sobre o sistema do motor devem ser observados. A análise será documentada com a ajuda de um dinamômetro e um analisador de gás combustível Testo 350 durante a aplicação. O consumo de combustível e os níveis de emissões devem ser documentados.

Uma redução no consumo de combustível e da emissão de gases de escape leva ao melhores níveis de compressão. Os engenheiros da empresa Power Train Technologies farão o acompanhamento do consumo de combustível e da emissão de poluentes no local do teste.

1.1 Histórico

O potencial para reduzir a emissão de poluentes e a redução do consumo de combustível foi a razão que levou ao efetuar estes teste. Particularmente os grandes motores industriais nas minas no Chile tenham um grande potencial de economia de combustível, devido ao regiem de trabalho dia e noite. Será um grande passo em direção ao um mundo mais eficiente e ambientalmente sustentável.

Relatório

Os direitos auditorias (©) deste relatório são exclusivamente da contratada. O relatório pode ser usado somente na integra, e para o uso parcial ou de excertos precisa ter a autorização por escrita da contratada.

As informações específicas do cliente obtidas no âmbito do presente contrato só será usados pela contratada baseado no projeto e não compartilhadas com terceiros. A contratada reserva-se expressamente o direito do uso dos dados para análise interna e estatística. Todas as observações deste relatório representam apenas a condição encontrado e reconhecido no momento do exame.

2 Dados técnicos

Dados do motor

Descrição	Dados Técnicos
Ano de fabricação	2003
Diâmetro	140 mm
Curso	171 mm
Desclocamento	15.8 litros
Óleo lubrificante	Shell Rimula R3 X 15W-40
Sistema de lubrificação	Aproximadamente 38.8 litros
Sistema de refrigeração	20.8 litros
Equipamento de análise	analisador de gás combustível Testo 350

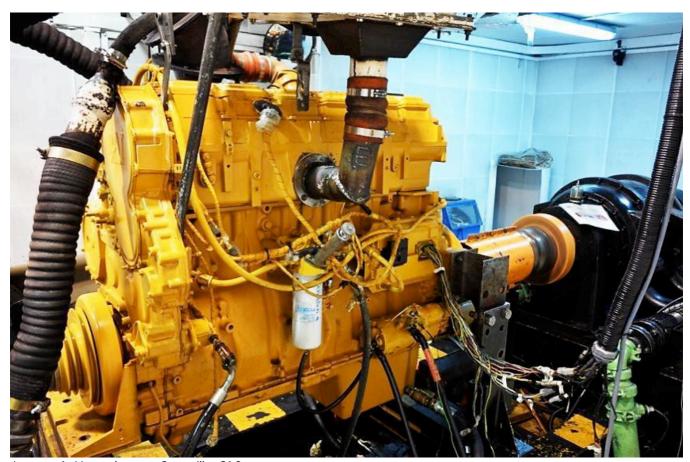


Imagem 1: Motor de teste Caterpillar C16

3. Aplicação

Uma medição precisa da eficiência do combustível na mina durante as operações é quase impossível, devido a diferentes razões. Cada dia de trabalho é diferente: caminhões trafegam com cargas diferentes na mais variadas rotações, até as temperaturas, a pressão dos pneus e do vento impactam sobre o consumo de combustível.

Imagem 2: Sala de controle

Para obter uma medição precisa, a única opção é testar o motor com um dinamômetro. Fizemos isto. O tempo de teste foi de aproximadamente 25 horas. Mais que 2.000 litros de combustível foram gastos. Para as medições, o motor foi testado em 4 diferentes estágios de carga (60%, 70%, 80% e 90%, em 1.800 RPM.

O consumo de combustível foi medido precisamente a cada segundo. Calculou-se, baseado em cada medição, uma média de períodos de 7-10 minutos, incluindo o desvio padrão.

Dois técnicos da Power Train Technologies acompanharam o teste, observando o motor durante todo o tempo.

4. Procedimento

Inicialmente o motor Caterpillar C16 operou aproximadamente 4 horas sem Rewitec® para poder comparar o consumo de combustível antes do tratamento. O consumo foi medido durante este período com cargas de 60%, 70%, 80% e 90%, com uma rotação de 1.800 RPM.

Baseados nos intervalos de medição a cada 10 minutos, calculou-se o consumo médio de combustível.

Depois o motor recebei o tratamento com REWITEC®, PowerShot® 20 e funcionou durante aproximadamente 5 horas com níveis de carga e rotações diferentes, até a próxima medição.

As medições seguintes (sempre com cargas de 60%, 70%, 80% e 90% e com rotação de 1.800 rpm) foram efetuadas em intervalos fixos ha cada 4 horas. Entre os intervalos das medições, o motor operou em vários níveis de carga e rotações para simular um dia normal de trabalho.

Todas as medições individuais são a média dos intervalos de 10 minutos, a fim de proporcionar uma precisão fiável.

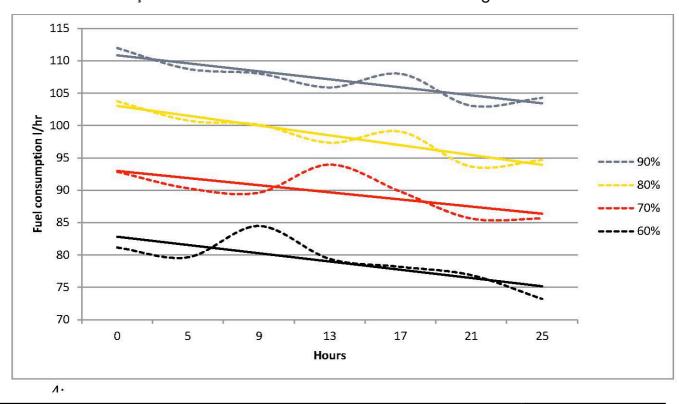
4.1 Análise dos dados

Planilha 1: Antes do tratamento com REWITEC® em 02.12.2015

Sem REWITEC	Medi	Medição 1		Medição 2		Medição 3		Medição 4	
	Valor	Unid.	Valor	Unid.	Valor	Unid.	Valor	Unid.	
Hora	10:30	Hr	10:53	Hr	11:07	Hr	11:21	Hr	
Temperatura motor	83	°C	84	°C	84	°C	84	°C	
Nível de óleo		mm		mm		mm		mm	
Rotações por min.	1.800	RPM	1.800	RPM	1.800	RPM	1.800	RPM	
Nível de carga	60	%	70	%	80	%	90	%	
Torque	1.480	Nm	1.960	Nm	2.088	Nm	2.267	Nm	
Força	279	kW	369	kW	394	kW	427	kW	
Pressão do motor	417	kPa	406	kPa	400	kPa	397	kPa	
Consumo combust.	82	Ltr./h	92	Ltr./h	104	Ltr./h	113	Ltr./h	
Consumo Médio	81,147	Ltr./h	92,859	Ltr./h	103,754	Ltr./h	111,985	Ltr./h	
Erro em %	0,996	% kPa	2,552	%	1,411	%	1,247	%	
Gases de escape	Ok		Ok		Ok		Ok		
Pressão combustível	643	kPa	644	kPa	639	kPa	638	kPa	
O_2	11,77	%	11,09	%	9,96	%	9,11	%	
NO	391	ppm	414	ppm	638	ppm	763	ppm	
CO_2	126	ppm	105	ppm	156	ppm	164	ppm	
NOX	399	ppm	422	ppm	651	ppm	778	ppm	

Planilha 2: Depois do tratamento com REWITEC® em 04.12.2015

Sem REWITEC	Medição 1		Mediç	ção 2	Mediçâ	ĭo 3	Medição 4		
	Valor	Unid.	Valor	Unid.	Valor	Unid.	Valor	Unid.	
Hora	19:06	Hr	19:21	Hr	19:34	Hr	19:42	Hr	
Temperatura motor	86	°C	86	°C	78	°C	87	°C	
Nível de óleo		mm		mm		mm		mm	
Rotações por min.	1.800	RPM	1.800	RPM	1.800	RPM	1.800	RPM	
Nível de carga	60	%	70	%	80	%	90	%	
Torque	1.500	Nm	1.790	Nm	2.089	Nm	2.350	Nm	
Força	283	kW	337	kW	394	kW	443	kW	
Pressão do motor	381	kPa	377	kPa	372	kPa	358	kPa	
Consumo combust.	76	Ltr./h	87	Ltr./h	93	Ltr./h	103	Ltr./h	
Consumo Médio	73,21	Ltr./h	85,64	Ltr./h	94,68	Ltr./h	104,28	Ltr./h	
Erro em %	1,946	% kPa	1,95	%	1,12	%	1,35	%	
Gases de escape	Ok		Ok		Ok		Ok		
Pressão combustível	328	kPa	325	kPa	622	kPa	619	kPa	
O_2	11,71	%	10,68	%	9,55	%	8,81	%	
NO	402	ppm	430	ppm	700	ppm	780	ppm	
CO_2	101	ppm	82	ppm	151	ppm	155	ppm	
NOX	412	ppm	439	ppm	715	ppm	796	ppm	



Planilha 3: Comparação do consumo ANTES / DEPOIS do tratamento com REWITEC®

Horas das Mediçõe	Carga 60%		Carga 70%		Carga 80%		Carga 90%	
	Ltr./h	Derivação padrão em %						
Sem REWITEC®	81,15	1,00	92,86	2,55	103,75	1,41	111,98	1,25
Com REWITEC®								
depois 5 horas	79,65	1,86	90,31	1,51	100,77	0,91	108,76	1,27
depois 9 horas	84,48	1,85	89,63	1,74	100,14	0,96	108,03	1,16
depois 13 horas	79,40	4,28	93,96	1,67	97,35	1,60	105,90	1,58
depois 17 horas	78,17	2,2	89,80	1,32	99,06	0,85	108,00	1,29
depois 21horas	76,89	1,95	85,64	1,53	93,67	1,14	103,07	1,52
depois 25 horas	73,21	4,79	85,64	1,95	94,68	1,12	104,28	1,35
economia	9,784%		7,775%		8,745%		6,884%	

Planilha 4: Redução do consumo em diferentes níveis de carga

REWITEC GmbH • Dr.-Hans-Wilhelmi-Weg 1 • D-35633 Lahnau • Geschäftsführer: Stefan Bill Telefon: +49 (6441) 445 99-0 • Telefax: +49 (6441) 445 99-25 E-Mail: info@rewitec.com Importador e Distribuidor para o Brasil: German- Tec Dist. Eireli Rua Constr. Sebastião Soares Souza Na 40 • 29101-350 Vila Velha (ES) • Brasil Tel. +55 (27) 30773012 • Fax: +55 (27) 30623336 • E-Mail: info@rewitec.com.br

Página 8 de 10

5. Conclusão e Recomendações

Baseado na análise das tabelas, chegou-se ao uma redução significativa do consumo de combustível. Considerando que o processo Rewitec® estará concluído somente após aproximadamente 100 horas de operação do motor, o consumo de combustível deverá diminuir mais ainda.

- > Os efeitos do REWITEC®, PowerShot® são claramente visíveis, portanto alcançou-se por completo o objetivo de melhorar as condições da eficiência atual com a adição da proteção contra desgaste.
- > Melhora da estrutura da superfície previamente danificada / desgastada
- > A estrutura melhorada das superfícies do motor deverá aumentar substancialmente a vida útil do motor.
- Os resultados práticos comprovam os resultados das pesquisas científicas das Universidades de Ciências Aplicadas de Mannheim e da Universidade de Giessen.

Recomenda-se para efetuar tratamentos subsequentes com REWITEC®, para proteger o motor de forma duradoura para muitos anos mais.

6. Anexo

Imagem 3: Sala de teste

Imagem 4: Detalhes do motor testado

Imagem 5: Detalhes do dinamômetro